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The diffraction of tides by a narrow channel 

By V. T. BUCHWALD 
School of Mathematics, University of New South Wales 

(Received 10 July 1970) 

A Green’s function for a semi-infinite rotating ocean of uniform depth is obtained, 
and the resulting near and far fields are estimated asymptotically. 

Given a tide of uniform height at  the mouth of a narrow channel on a semi- 
infinite ocean, the Green’s function is used to calculate the diffracted Kelvin 
and Poincark waves propagating up the channel and into the ocean. 

1. Introduction 
Assuming a time factor eiwt, the linearized equations of motion of long waves 

in a sheet of water of uniform depth h, rotating about a vertical axis with angular 
velocity if, can be reduced to 

hk2u = iwCx+ feu, (1 .1)  

hk2v = - fCX + iw&, (1.2) 

c,, + !& + k25 = 0. (1.3) 

In  these equations, u(x, y), w(x, y) are the particle velocities, averaged over the 
.depth, in the (right-handed) x, y directions, respectively, h + [is the depth in the 
.disturbed state, the suffixes indicate partial derivatives with respect to x, y, and 

k2 = (w’ -f2)/a2, (1.4) 

where a = (gh)f is the velocity of long waves whenf = 0. 
In  an infinite sheet of water, plane waves of the form 

(1.5) 

.are possible provided w > f, with phase velocities wlk. If there is an infinite 
barrier a t  (say) x = 0, then in x > 0 there may be Kelvin waves of the form 

5 = &(kx-wt) 

5 = exp p + i w  E + t ) ] ,  

travelling with speed a along the boundary in the negative y direction. 
In  this paper we consider a semi-infinite ocean in the region x > 0 in which the 

,depth is h,, and the appropriate constants and variables in this region are denoted 
by the suffix 2 (e.g. a2, {,, etc.). A channel of uniform depth h, occupies the region 
IyI < b,  x < 0, and connects with the ocean on the segment x = 0, IyI <b, as 
in figure 1. Appropriate quantities in the channel region are denoted by the 
.suffix 1. 
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We shall assume that the tidal problem in the ocean region is solved to the 
extent that there is a known solution co of the inhomogeneous counterpart of (1.1) 
to (1.4), with uo = 0 at  x = 0. It will also be assumed that the channel is narrow, 
so that fb/a2, wb/a, are small quantities, whence the number 

2 = k,b (1 .7)  

is sufficiently small to allow us to make the approximation that, near the mouth, 

(1 .8)  

where H,, HI are constants, and r = (x2+y2)* = O(b). The problem to be con- 
sidered in this paper is to find solutions cl, C2, of (1 .1)  to (1.4) which satisfy the 

C0@, y) = CHo + (&/a2) (iwy -f31 eiWt + 0V2), 

(region I )  ;a 
Kelvin 

Ocean 
(region 2 )  

I wave 

FIGURE 1. The waves due to diffraction by a narrow channel. 

boundary conditions a t  the shore, and appropriate continuity conditions a t  
the mouth of the channel, up to terms of 0(Z2). It will be shown that, as illustrated 
in figure 1, the diffracted waves consist of Kelvin waves propagating along the 
coast and into the channel, together with cylindrical Poincar6 waves radiating 
into the ocean provided w > f. 

As a first step in the calculation, we shall obtain a Green’s function for the 
ocean region in closed form, and asymptotically estimate the resulting near and 
far fields. The results for the far field agree with those of Voit (1958), while the 
near field reduces to the one obtained by Proudman (1925) in the special case 
f 21w2 < 1. The near-field solution derived in this paper is valid for all values of 
the ratio CT = w/f. 

Once the Green’s function is obtained and its properties are established, it is 
a fairly simple procedure to extend Proudman’s (1925) method of matching cl 
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and <, to all values of c, and to evaluate in the case h, = h, the amplitudes and 
phases not only of the Kelvin wave proceeding up the channel, but also of the 
Kelvin waves on the coast, together with the Poincar6 waves in the ocean. 

If h, $: h, there is no obvious way of applying the matching procedure, and in 
3 4 the exact solution of the diffraction problem is formulated as the solution of 
an integral equation. By resorting to a first-order Galerkin procedure and making 
use of the smallness of 8, an approximate solution is obtained. If h, = h, the 
latter solution gives the same amplitudes as Proudman’s method, but there is 
a small error in the phases of the diffracted waves. 

2. A Green’s function for a semi-infinite ocean 
Suppose that an ocean of uniform depth occupies the region x > 0, and that, 

except at the origin, there is a rigid barrier at x = 0. At the point (0,O) we assume 
that there is an aperture producing an oscillating flow. In x > 0 , c  satisfies (1.3), 
and we assume that the boundary condition at x = 0 is 

where 6(y) is the Dirac delta function. We shall also assume that w has a small 
imaginary part, so that 

w = w’-iiB ( B  > O ) ,  (2.21 

this being a convenient way of applying the radiation condition. The steady- 
state solutions may be obtained by taking E + 0 + . 

An integral representation of (r valid in x 3 0 is 

and (1.3) is then satisfied if 
s = (p2 - l c2 )h .  

(2.3) 

(2.4) 

The /3 plane is cut as in figure 2, and for convergence of the integral in (2.3) 
it  is necessary to choose the branch for which s - I/?[, as /3 -+ & 00. 

By a simple application of Fourier’s inversion theorem to (2.1), it  is easily 
shown that 

Q(p) = ihk2/2n(ffi+ws). (2.5) 

After rewriting (2.3) and (2.5) in the form 

where Po = w/a,  transformations of standard forms (Campbell & Foster 1948, 
pairs 444, 445, 867,868) can be used to show that, for cr = w/f > 1, 
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B,(x, y) = (h~ /2a2)  Hi2) (Icy), (2.8) 

504 

where 

(2.9) 

B3(0, y) = ( -fh/2a2) e-ipolul sgn y, (2.11) 

where HE) are Hankel functions, and r = (x2+ y2)8. If (T < 1 ,  we write k = -ik' 
and the above expression may be written in terms of modified Bessel funct)ions, 
using the rule K,(z) = - &ri e-hni  HJ;)( - i z ) .  

(4 (4 
FIGURE 2. Cuts in complex plane for ( a )  c > 1, and ( b )  u < 1 .  

It should be noticed that in (2.8)-(2.10), B,(x, y) is the well-known solution in 
the case f = 0. Moreover, B,(x, y) is symmetric in y and B3(x, y) is antisymmetric, 
and each contains one half of the Kelvin wave. Both B, and B, also contain 
terms representing an edge wave propagating in the positive y direction, but 
these terms cancel in the sum in (2.7). 

is given explicitly by either (2.3) or (2.7), the following asymptotic 
approximations are useful. 

(a )  The farjield 

Expressions for the far field have been obtained by Voit (1958), and the elements 
of a more concise derivation are given below. Seshadri (1962) and Williams (1 964) 
have also obtained similar results, in a different physical context limited to 
positive values of k2. 

Although 

(i) > 1. The transformations 

x = rcos0,  y = rsin0, p = ksinp, s = ikcosp, (2.12) 

where p = p + i v ,  are applied to the integral in (2.3), with the result 

ihk2 cos p 
exp [ - ikr cos (0 - p)]  dp, (2.13) 
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FIGURE 3. The path of integration L and the path of steepest descent L* in the complex 
p planc for (a) D > 1 ,  and ( b )  D < 1. 
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the path of integration L being the segments X,ABY, in figure 3 (a).  The pole 
at  = -Po is transformed into a pole at  W, where p = 417 - i sin-l (Polk),  and 
an application of the radiation condition shows that L is to the right of W. 

The saddle point is at  p = 8, and the path of integration L is deformed to the 
path L*, through the saddle point, given by cos (p - 8) cosh v = 1, as in figure 3 (a). 

The pole is captured if 8 < - sin-1 (k/P,), and, using standard results for the 
method of stationary phase, we obtain 

(2.14) CQ = K ,  + KKH(8, - fa, 

r 

Kelvin 
wave 

FIGUF~E 4. The far field for the Green's function gG(z, y). 

where H ( z )  is the Heaviside unit function, 8, = - sin-l (k /Po);  and 

(2.15) 

is a cylindrical wave radiating from the origin, while 

(2.16) 

represents a Kelvin wave travelling along the negative y axis, as in figure 4. 
The result in (2.14)-(2.16) agree with those of Voit (1958) (Voit's equations 

(2.8) and (2.9), after allowance has been made for misprints and notation changes). 
(ii) 

p = -  ik'sinp, s = k'cosp, (2.17) 

where k' = ik = (fz - w2)'IcI. The paths of integration L and L* are as in figure 3 (b ) ,  
the saddle point being at  p = 0.  Using the method of steepest descent, the pole 
is captured only for 8 < 0, with the result that 

'& = g,+ K K H ( - 8 ) ,  (2.18) 

K K  = ( fls) &w-fd/a 

cr < 1. In this case 
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where, in this case, 

K -  (2.19) 

and K ,  is given by (2.16). Note that only the Kelvin wave is propagat,ed. 

(b) The near Jield 

Assuming cr > 1, it may be shown that for I yk I < 1 , 

(2.20) 

(2.21) 

0 2i 
Bl(O,Y) = - 2g [1-,logfykly/] + o [ ( ~ y ) 2 k Y l ,  

f 0 + 1  
B,(O,y) = ~ g l o g ~ l + o O l ( k Y ) 2 ~ o g Y l  

B,(O,y) = --"1-ip,~y~lsgn?I+O[(ky)21, f (2.22) 
2g 

where logy is Euler's constant, and the result (Erdelyi et al. 1954) 

If x + 0 the derivation is not quite so straightforward, but it may be shown 
that if cr > 1 

2O-tilog- crf ')I + O(kr) .  (2.23) 
7rcr 0-- 1 

If r < 1, then k = - ik', when 

+0-)] + O(k'r). (2.24) 
1 - 0  

The formulae in (2.23) and (2.24) give the near field of CG uniformly for all values 
of cr. If 0- = 1, cG = 6 [1-: ( l o g g - i ~ ) ]  + ~ ( f r / a ) .  

3. Propagation into a narrow channel 
The geometry of figure 1,  with h, = h,, is assumed. Following Proudman (1925) 

we take two outer regions in the channel, and ocean, respectively, and an inner 
matching region at  the mouth of the channel, where r = O(b). 

The displacement in the channel can be expressed as the series 
a, 

Cl(x, y) = Aoetrg+i"z)~a+ C A,[fP,s inp,(y+b)fwp,cos/~,(y+b)]e~Bn~,  (3.1) 
n= 1 

where pn = nn/2b, t% = k2 -p;, (3.2) 

and the time factor eiwt is assumed. Note that unnecessary suffices have been 
dropped. The A ,  are arbitrary constants, and it is easily shown from (1.2) that 
ul(x, b )  = 0. Also, substitution in ( 1 . 1 )  yields 

m 
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If bk < $m, then ,8, is negative imaginary, and only the Kelvin wave, repre- 
sented by the term in A ,  in (3. l ) ,  gives waves which propagate along the channel. 

If it  assumed that 2 = kb < 1, but the ratios f: w : ak are O( 1), then 

,8, = - i p n + 0 ( Z 2 ) .  

Near the channel end, where r = O(b) ,  we may rewrite (3.1) in the form 

el@, y) = A,[1 + (fv + iwx)/a + 0V2)1 
m 

n= 1 
+ C pnA, [wcospn(~+b) - i f s inpn(y+b) ]e f inZ .  (3.4) 

In the ocean region it is assumed that for x > 0, and r = O(b) ,  

c2:2(x, Y) = C O ( X ,  Y) + DcG(x7 Y), (3.5) 

where co is given in (1.8), cG is given in (2 .7 ) ,  and D is a constant which is to 
be determined. Near the channel cG is given by (2.23) or (2 .24) .  

In the matching region we write 

[ = x /b ,  7 = y / b ,  
when, in the new co-ordinat,es, 

V q - +  2 2 5  = 0, 

6 = 6111 + 0 ( Z 2 ) ,  so that, in this region, 

where ct1 satisfies Laplace’s equation. It can now be shown that the boundary 
conditions and the conditions a t  infinity may be satisfied if is expressed in 
the form 2 

where di, $i, are conjugate harmonic functions determined by the mappiiigs 

W1 = (Pl+i$bl = 2lOgT-i7T, (3.9) 

w2 = + 2 + i ~ 2  = I-, (3.10) 

(3.11) x = m([ + ill) = 2 log T - 2 log [(T~ - 1)t + i ]  - 2472 - I)$,  

where, in (3.1 l ) ,  the branch is chosen so that ( 7 2 -  1)t N T, as T -+ co. 
In the channel, as T -+ 0,  [ + - 00, and it can be shown that the following 

asymptotic expansions hold : 
m 

w1 = n(x  + i y ) / b  + 2 log 2 - 2 + (3.12) 
m= 1 

w2 = i M P ekp-i(x+iY), (3.13) 

where Ml = 2e-l, and the other real coefficients L,, M,, are obtainable from 
(3.9) to (3.11) by successive numerical approximation. 

In the ocean, as I- --f 00, z -+ co, largzl < an, when 

Lm ehm(Z+iY), 

m 

p = l  

w1 = 2 log (nrr/2b) + 2iB + O[(r /b) -2] ,  

w 2  = mi@+ i y ) / 2 b  + O[b / r ] ,  
where r = (x2 + y2)1. 

(3.14) 

(3.15) 
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as x -+ -a with el as x -+ 0, and c, as r -+ 00 The next step is to match 
with c, as r -+ 0. After some algebra, we find that, for a > 1, 

and 
I f a <  1, 

H , = A ,  [ I+-- 2;; (1 - log 2ybk 7 - gnz . - - 1 log - a+1) + O ( Z 2 ) ) ,  (3.16) 
2 a  a-1 

aD = -2gbA,. (3.17) 

,7r% - 4 log - +0(Z2)).  (3.18) 
2ybk' a-alog--l * 

7r 1--cr 

These results are valid for all values of a, there being no singularity at  a = 1. 
If i t  is assumed that a-2 is small enough to be neglected when compared with 
unity, then Proudman's (1925) results are obtainable from (3.16). It should be 
noticed that by virtue of (3.17), the coefficient of the second term of (3.5) is 
O(Z) ,  and hence, although the error in in (2.23) and (2.24) is O ( 2 )  as r +- 0, 
equation (3.5) has errors of only O(Za). Another consequence is that we may 
replace A,  by H, in (3.17) without loss of accuracy. 

It is easily seen from (3.16) and (3.18) that 

IAo/HoI = 1 - (wb/a) (a 2 I ) ,  
= 1 -@/a) (a < 11, (3.19) 

if terms of O[(Zlog2)2] are neglected. There is also a change of phase which is 

The coefficients of the diffracted Kelvin and Poincar6 waves are determined 
O[ZlogZ]. 

from (2.15), (2.16)' (3.5), (3.17) and (3.19), with the result that 

e-W~-&O (a > l), (3.21) 
cos e C p  = - 2kbaH (L)' 

O 2ar wcose-ifsin8 

and C K ,  C p  are the diffracted Kelvin and Poincar6 waves, respectively, Note that 
the amplitude of the diffracted Kelvin wave is O ( Z ) ,  and that the phase is 
reversed when compared with the incident wave. 

The coefficients in the sum in (3. I )  are also obtained in the matching procedure 

(3.22) 
in the form ib  

rU2pA,p = - ( -1)PAO&l+0(z2) ,  
a7r 

(3.23) 

The term in Hl in (1.8) does not contribute to the diffracted waves to the order 
of magnitudes considered. 

4. The effect of a change in depth 
If h, + h, it  is not easy to see how to use the conformal mapping method, and 

an alternative procedure is adopted. The continuity conditions a t  the mouth of 
the channel are el = c2, h,% = h2% (4.1) 
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when x = 0 and IyI < b. Otherwise the geometry and other conditions are as 
in $3 .  Now suppose that (;1 is known in the channel, where [, is given by the 
series (3.1)) except that a, = (gh,)$, and k2, = (m2--f2)/a2,, so that 

= k2,- ui .  

Then h,u,(O,y) is given by the series (3.3)) and using (4.1) together with the 
Green's function, we obtain the integral equation 

P b  

for IyI < b, where cG is given by (2.7)-(2.11) and A = h,/h,. Using $ 3  as a guide, 
it has been assumed that the term in H, in (1.8) does not give rise to propagating 
diffracted waves, and may be disregarded for this reason. As a f i s t  approximation 
we use a fist-order Galerkin technique, i.e. we approximate cl and u1 by the 
term in A ,  only, multiply (4.2) by efg'crl and integrate from - y to y. Since the 
channel is narrow we use the near-field approximation for v > 1, 

to obtain, after some computation, that 

= sinh 2F + ~ 2Aei [sinh F shi F - cosh F cinh F 2H, sinh P 
A" 7r 

5+ 1 
0-- 1 

ni+c-110g-+220gybk, 

where A = h,/h,, P = fb/a,, and 

sinh z dz 

Noting that as F + 0, shi F N F ,  and cinh F N IFz,  it may be shown for a na,rrow 
channel that, for r > 1, 

a+1)) (a > 1)) (4.4) 
H , = A ,  { 1+- 2zy ($-logybk,-&ri--log- 1 

2 e  r-1 

with a similar result for c < 1, that 

H, = A ,  ( 1+- 'fa: ($0-- clog ybki - in; - +log - (4.5) 

It follows from (4.4) and (4.5) that up the channel 

lAo/Hol = 1 - (w4b/a1), (c > 1), 

= 1 - (f4b/a1), (a < 1). 
If the channel and ocean regions are of the same depth, then A = 1, and the 
formulae in (4.6) are identical with (3.19). Note also that the inner brackets in 
(4.4) and (4.5) differ from the inner brackets in (3.16) and (3.18) by 

4 -log M 0.05, 
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so that the errors in phase in A ,  in (4.4) and (4.5) are very small, being about 
Z/lOn. Assuming that this error may be neglected, the results obtained by the 
Galerkin technique for A = 1 agree with those obtained by Proudman’s method. 
It should be emphasized here that it is not certain that the Galerkin method 
should give accurate results, although when the method is used in similar 
circumstances (Miles & Munk 1961) good results are obtainable. However, in 
this case a direct comparison with Q 3 in the case A = 1 suggests that the results 
in (4.6) are correct up to O(2). 

We have assumed that h,u,(O, y) = -a,A,ef~’al,  so that by convolution with 
(2.16), and using (4.1), the diffracted Kelvin wave is given by 

(4.7) 

for small 2, which is in agreement with (3.20) if A = 1. Similarly, the diffracted 
Poincar6 wave contains the factor A compared with (3.21). 

5. Conclusion 
It has been shown that a narrow channel on a straight coastline gives rise to 

diffracted Kelvin and Poincar6 waves, the amplitudes of which are proportional 
to the width of the channel and to the ratio of the depth in the channel and the 
ocean. Munk, Snodgrass & Wimbush (1970) have made extensive theoretical 
and observational studies of the tides on the California coast, with results that 
indicate very significant Kelvin wave components in the observed tides. Bearing 
in mind that a slight modification of the results of Packham & Williams (1968) 
would show that a sharp bend in a coastline is an effect of conversion of tides into 
Kelvin waves, one would expect that a combination of bends, bays and channels 
would make a significant contribution to the generation of the Kelvin wave 
components of the observed tides. 

This paper was inspired by a seminar given by Walter Munk at the CSIRO 
Division of Fisheries and Oceanography, Cronulla, and a subsequent discussion 
with him. I am also indebted to Walter Munk for the receipt of a translation of 
Voit’s paper, and to C. J. R. Garratt for some helpful suggestions. 
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